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Murine models have suggested that CD8� T-cell responses peak early in acute viral infections and are not
sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the
CD8� T-cell response to human parvovirus B19 in acutely infected individuals. We observed striking CD8�

T-cell responses, which were sustained or even increased over many months after the resolution of acute
disease, indicating that CD8� T cells may play a prominent role in the control of parvovirus B19 and other
acute viral infections of humans, including potentially those generated by live vaccines.

The emergence of new tools for the ex vivo analysis of
cellular immune responses, especially CD8� T-cell responses,
has revealed an important role for such cells in a range of viral
infections. In studies with mice, most work on acute infection
has been focused on influenza and lymphocytic choriomenin-
gitis virus (6, 11, 29). However, very little is known about CD8�

T-cell responses in acute infections in humans; most work has
focused on latent and persistent infections, such as human
immunodeficiency virus, cytomegalovirus (CMV), Epstein-
Barr virus, and hepatitis B and C virus (1, 16, 17) infections. In
infections which are truly cleared, such as influenza, responses
may return to a low-level resting memory state (20). In con-
trast, in infections with very-low-level persistence, such as
CMV infection, strong immune responses may be sustained,
and indeed, may increase over time (12, 13). Such responses
typically possess “mature” effector characteristics indicative of
repetitive antigen exposure (2, 26). Parvovirus B19 (B19) is a
common virus with significant pathology (7). As B19 is re-
garded as a typical “hit-and-run” virus, the humoral response
plays a well-documented role for viral neutralization, but there
is also evidence that low-level persistence can occur in certain
cases (21, 27). Cellular immune responses have also recently
been described, both CD4� proliferative- and CD8� cytotoxic-
T-cell responses, with one HLA-B35-restricted epitope char-
acterized so far (4, 5, 28). The small B19 genome is very stable
and encodes only three major proteins, which makes it suitable
for extensive study without compromise due to incoming anti-
genic variability. Here, we describe the first assessment of the
breadth, specificity, and kinetics of the acute CD8� T-cell
responses in this infection.

B19 immunoglobulin M (IgM)-positive samples from five
previously healthy adult females (S1 through S5; age range, 32

to 51 years) were prospectively identified at the Clinical Virol-
ogy Laboratory at the Karolinska Hospital, Stockholm, Swe-
den, after local ethical approval of the study. All presented
with symptoms of fever, arthralgia, fatigue, and rashes, and
were diagnosed within 11 days. Medical history gave no indi-
cation of susceptibility to infections. Serum and heparinized
blood samples were collected at intervals for 48 to 108 weeks
after diagnosis. Serum was analyzed for B19 DNA by nested
PCR with a sensitivity of 103 DNA copies/ml and for B19 IgM
and IgG by using an enzyme immunoassay (Biotrin Interna-
tional, Dublin, Ireland) (28). Peripheral blood mononuclear
cells (PBMC) were separated by Ficoll-Paque (Amersham,
Uppsala, Sweden). DNA was extracted from PBMC by using
the QIAamp DNA minikit (VWR, Stockholm, Sweden) and
analyzed by PCR to enable B19 DNA detection in escaped
cells from bone marrow. HLA class I genotyping was per-
formed by ABC SSP Unitray (Dynal, Oslo, Norway). Published
sequences were used for synthesizing 210 peptides covering the
nonstructural protein (NS), the unique region of the minor
(VP1ur) structural protein, and the major (VP2) structural
proteins (Table 1) (24). Gamma interferon (IFN-�) responses
were measured by ELISpot (15), using biotinylated IFN-� an-
tibodies (Mabtech, Stockholm, Sweden) and by intracellular
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TABLE 1. Peptide specifications

Protein Peptide Pool

Name Length
(aa)a

No. of
peptides

Length
(aa)b

Amino
acid

overlap

No. of
pools

No. of
peptides
in pool

NS1 671 133 15 (11) 10 14 10 (3)
VP1ur 227 22 20 (17) 10 3 10 (2)
VP2 554 55 20 (14) 10 6 10 (5)

a aa, amino acid.
b The length of the last peptide for the respective protein is given in paren-

theses.
c The number of peptides in the last pool of the respective peptide set is given

in parentheses.
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staining (ICS) (18). PBMC was depleted of CD8� T cells by
using microbeads (Miltenyi Biotec, Gladbach, Germany).
Nonamer-mediated cytotoxicity was tested by 51Cr-release as-
say (22, 25). HLA restrictions were estimated by using the
BIMAS algorithm (http://bimas.cit.nih.gov) and T2-cell assays

(14) and by matching single HLA alleles of targets and effec-
tors in 51Cr experiments.

All individuals showed normal mitogen-induced IFN-� re-
sponses and proliferation in vitro (data not shown). Fever,
rashes, and fatigue resolved within 6 weeks. Responses to 8 of

FIG. 1. Longitudinal ELISpot, serology, and PCR data. Each graph is composed of three panels. The upper panel shows the IFN-� responses over
time expressed as SFC/106 PBMC. Solid lines with symbols represent positive peptide pool responses that were further mapped and are replaced at later
time points by the responses to single peptides or nonamers, represented by dashed lines with the corresponding symbols. Dashed lines without symbols
represent responses to the other peptide pools. For plotted responses to overlapping 15-mers (S4), responses to both peptides were equal, and only the
second is plotted for clarity. For readability, error bars are not plotted, but mean standard deviations � 95% confidence interval of positive triplicates
were 58 � 22, 53 � 27, 46 � 22, 37 � 14, and 30 � 18 SFC/106 PBMC for S1 through S5, respectively. The middle panel shows the IgG levels over time
expressed in international units (IU) per ml. In the lower panel, the IgM serology is shown above the PCR results. A solid line was drawn between positive
samples, and a dashed line represents time between a positive and negative result (or intermediate). Squares mark intermediate IgM serology results.
Circles mark the time points when B19 DNA was lost in serum; further positivity then represents detectable viral DNA in PBMC. SFC, spot-forming cells.
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the 14 NS pools and 1 of the 6 VP2 pools were shown. No
responses to the VP1ur pools were shown. All individuals re-
sponded to NS, whereas a VP2 response was present in only
two individuals. Responses peaked at around 1 year in S1, S2,

and S3, with a decline at about 2 years, whereas S4 showed a
more rapid course, with a peak at 15 weeks and a decline at 1
year (Fig. 1). S5 was followed for 48 weeks with stable response
levels. In S2, IgM antibodies were detected for more than 90

TABLE 2. Epitopes and peptides defined by mapping of pool responses

Peptide namea Amino acid sequenceb HLA
restriction

Specific lysis
(%)c

Response after
CD8�

depletion (%)d

NS (9) 102-GLF GLFNNVLYH NAf 55 31
NS (9) 247-SSH SSHSGSFQI NA 65 0
NS (9) 276-LLH LLHTDFEQV A*02 50 0
NS (9) 277-LHTe LHTDFEQVM NA 15 1
NS (9) 456-TEA TEADVQQWL B*40 60 16
NS (9) 457-EADe EADVQQWLT NA 25 20
NS (9) 460-VQQ VQQWLTWCN NA 10 4
NS (9) 613-GLC GLCPHCINV A*02 15 4
VP2 (9) 546-TAK TAKSRVHPL B*08 25 0
NS (11) 456-TEA TEADVQQWLTW B*44 NA NA
NS (15) 156-NID NIDGYIDTCISATFR
NS (15) 161-IDT IDTCISATFRRGACH
NS (15) 336-NLA NLAMAIAKSVPVYGM
NS (15) 426-TTT TTTTVHAKALKERMV
NS (15) 431-HAK HAKALKERMVKLNFT

a Nomenclature used for peptide naming is as follows: B19 protein abbreviation and then the amino acid length in parentheses, followed by the position of the first
amino acid in the protein according to the sequence published by Shade et al. (24). After the hyphen are the first three amino acids in the peptide sequence given.

b Sequences in boldface are plausible to contain a shorter epitope due to the overlap of reactive 15-mers.
c Percent specific lysis of pulsed autologous target cells in 51Cr-release assays at 50:1. NS(11)456-TEA was defined using ICS and was not tested in the cytotoxic assay.
d IFN-� response in ELISpot relative to PBMC.
e Regarded as suboptimal epitopes with one amino acid shift.
f NA, not available.

FIG. 1—Continued.
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weeks, whereas in all others, they were lost between weeks 15
and 35. From the second week, IgG levels were raised and
maintained above 6 IU/ml (23). In S2 and S5, B19 DNA was
detected in PBMC throughout the entire follow-up, while this
was lost between weeks 13 and 41 in the other individuals. Pool
responses were fine mapped to five 15-mers and nine nonam-
ers, of which seven nonamers were considered to represent
novel CD8� T-cell epitopes (Table 2; Fig. 2). By combined
methods, it was possible to suggest HLA restrictions for four of
these epitopes. When stimulating peptides of different lengths
around the sequence of NS(9)456-TEA (see Table 2 for pep-
tide nomenclature) were used in ICS, an additional B*44-
restricted 11-mer epitope was detected (data not shown).

Thus, adults presenting with symptomatic B19 infection rap-
idly develop cellular immune responses with multiple specific-
ities, which rise to high levels and are maintained for many
months. The responses do not decay as anticipated but are
kept at high levels for a long time, sometimes more than 2
years. This could be the result of continuous antigenic stimu-
lation, analogous to truly persistent low-level CMV infection.
Indeed, for three out of five individuals, B19 DNA was de-
tected in peripheral blood for over 6 months. It is possible that
B19 persists beyond this time in the bone marrow, in which
prolonged replication has been observed (8, 19). Most re-
sponses were directed to NS, while two individuals also re-
sponded to an epitope in VP2. In contrast, neutralizing anti-
bodies and a majority of CD4� T-cell responses are reported
to be primarily directed to the structural proteins (4, 5, 21).
Thus, there is evidently a division in structural and nonstruc-
tural preference for the different arms of the immune system.
Importantly, we found that S3, S4, and S5 all made three
roughly equal responses at 5 to 10 weeks after symptom onset.
All but one of these responses were maintained at equal high
levels over at least a further 20 weeks. Thus, in B19 infection,

multiple “equidominant” CD8� T-cell immune responses oc-
cur simultaneously, with no clear pattern of changing dominant
responses over time as, for example, seen for Epstein-Barr
virus or murine CMV (9, 26). This may reflect the structural
and replicative simplicity of B19, in that no division in early
and late proteins exists. Other responses may have been missed
either because they occurred very early or were not detected
using 15- or 20-mer peptides. B19 is not classically persistent in
normal infection and is present only in about 2% of bone
marrow samples from healthy subjects (8). However, it seems
clear that B19 infection is not to be immunologically described
by the paradigm of lytic nonpersistent viruses that postulates
rapid viral clearance and contraction of the initial cytotoxic-T-
cell burst in the absence of antigenic drive (3, 10). B19 assumes
characteristics of lytic viruses, both of lytic nonpersistent, and
persistent, viruses, and elicits a striking pattern of immunolog-
ical response in human primary infection. Harnessing such
CD8� T-cell responses to generate vaccine responsiveness is
an exciting possibility. In further comprehensive approaches to
characterization of the human CD8� T-cell response, B19 may
serve as a key model for dissecting the complexities of long-
term virus-host relationships.
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